vinayakb | 38b7ca4 | 2012-03-05 05:44:15 +0000 | [diff] [blame] | 1 | use dataverse fuzzy1; |
| 2 | |
| 3 | declare type DBLPType as open { |
| 4 | id: int32, |
| 5 | dblpid: string, |
| 6 | title: string, |
| 7 | authors: string, |
| 8 | misc: string |
| 9 | } |
| 10 | |
| 11 | declare nodegroup group1 on nc1, nc2; |
| 12 | |
| 13 | declare dataset DBLP(DBLPType) |
ramangrover29 | 669d8f6 | 2013-02-11 06:03:32 +0000 | [diff] [blame] | 14 | primary key id on group1; |
vinayakb | 38b7ca4 | 2012-03-05 05:44:15 +0000 | [diff] [blame] | 15 | |
| 16 | write output to nc1:'/tmp/dblp.adm'; |
| 17 | |
| 18 | // |
| 19 | // -- - Stage 3 - -- |
| 20 | // |
| 21 | for $ridpair in |
| 22 | // |
| 23 | // -- - Stage 2 - -- |
| 24 | // |
| 25 | for $paperR in dataset('DBLP') |
| 26 | let $tokensR := |
| 27 | for $word in counthashed-word-tokens($paperR.title) |
| 28 | for $token at $i in |
| 29 | // |
| 30 | // -- - Stage 1 - -- |
| 31 | // |
| 32 | for $paper in dataset('DBLP') |
| 33 | for $word in counthashed-word-tokens($paper.title) |
| 34 | group by $item := $word with $paper |
| 35 | order by count($paper) |
| 36 | return $item |
| 37 | where $word = $token |
| 38 | order by $i |
| 39 | return $i |
| 40 | for $prefix_tokenR in subset-collection( |
| 41 | $tokensR, |
| 42 | 0, |
| 43 | prefix-len( |
| 44 | len($tokensR), 'Jaccard', .5)) |
| 45 | |
| 46 | for $paperS in dataset('DBLP') |
| 47 | let $tokensS := |
| 48 | for $word in counthashed-word-tokens($paperS.title) |
| 49 | for $token at $i in |
| 50 | // |
| 51 | // -- - Stage 1 - -- |
| 52 | // |
| 53 | for $paper in dataset('DBLP') |
| 54 | for $word in counthashed-word-tokens($paper.title) |
| 55 | group by $item := $word with $paper |
| 56 | order by count($paper) |
| 57 | return $item |
| 58 | where $word = $token |
| 59 | order by $i |
| 60 | return $i |
| 61 | for $prefix_tokenS in subset-collection( |
| 62 | $tokensS, |
| 63 | 0, |
| 64 | prefix-len( |
| 65 | len($tokensS), 'Jaccard', .5)) |
| 66 | |
| 67 | where $prefix_tokenR = $prefix_tokenS |
| 68 | |
| 69 | let $sim := similarity( |
| 70 | len(counthashed-word-tokens($paperR.title)), |
| 71 | $tokensR, |
| 72 | len(counthashed-word-tokens($paperS.title)), |
| 73 | $tokensS, |
| 74 | $prefix_tokenR, |
| 75 | 'Jaccard', |
| 76 | .5) |
| 77 | where $sim >= .5 and $paperR.id < $paperS.id |
| 78 | group by $idR := $paperR.id, $idS := $paperS.id with $sim |
| 79 | return {'idR': $idR, 'idS': $idS, 'sim': $sim[0]} |
| 80 | |
| 81 | for $paperR in dataset('DBLP') |
| 82 | for $paperS in dataset('DBLP') |
| 83 | where $ridpair.idR = $paperR.id and $ridpair.idS = $paperS.id |
| 84 | return { 'R': { 'dblpid': $paperR.dblpid, 'title': $paperR.title }, |
| 85 | 'S': { 'dblpid': $paperS.dblpid, 'title': $paperS.title }, |
| 86 | 'sim': $ridpair.sim } |