vinayakb | 38b7ca4 | 2012-03-05 05:44:15 +0000 | [diff] [blame] | 1 | use dataverse fuzzy1; |
| 2 | |
| 3 | declare type DBLPType as open { |
| 4 | id: int32, |
| 5 | dblpid: string, |
| 6 | title: string, |
| 7 | authors: string, |
| 8 | misc: string |
| 9 | } |
| 10 | |
| 11 | declare type CSXType as open { |
| 12 | id: int32, |
| 13 | csxid: string, |
| 14 | title: string, |
| 15 | authors: string, |
| 16 | misc: string |
| 17 | } |
| 18 | |
| 19 | declare nodegroup group1 on nc1, nc2; |
| 20 | |
| 21 | declare dataset DBLP(DBLPType) |
ramangrover29 | 669d8f6 | 2013-02-11 06:03:32 +0000 | [diff] [blame^] | 22 | primary key id on group1; |
vinayakb | 38b7ca4 | 2012-03-05 05:44:15 +0000 | [diff] [blame] | 23 | |
| 24 | declare dataset CSX(CSXType) |
ramangrover29 | 669d8f6 | 2013-02-11 06:03:32 +0000 | [diff] [blame^] | 25 | primary key id on group1; |
vinayakb | 38b7ca4 | 2012-03-05 05:44:15 +0000 | [diff] [blame] | 26 | |
| 27 | write output to nc1:'/tmp/pub.adm'; |
| 28 | |
| 29 | // |
| 30 | // -- - Stage 3 - -- |
| 31 | // |
| 32 | for $ridpair in |
| 33 | // |
| 34 | // -- - Stage 2 - -- |
| 35 | // |
| 36 | for $paperR in dataset('DBLP') |
| 37 | let $lenR := len(counthashed-word-tokens($paperR.title)) |
| 38 | let $tokensR := |
| 39 | for $word in counthashed-word-tokens($paperR.title) |
| 40 | for $token at $i in |
| 41 | // |
| 42 | // -- - Stage 1 - -- |
| 43 | // |
| 44 | for $paper in dataset('DBLP') |
| 45 | for $word in counthashed-word-tokens($paper.title) |
| 46 | group by $item := $word with $paper |
| 47 | order by count($paper) |
| 48 | return $item |
| 49 | where $word = $token |
| 50 | order by $i |
| 51 | return $i |
| 52 | for $prefix_tokenR in subset-collection( |
| 53 | $tokensR, |
| 54 | 0, |
| 55 | prefix-len($lenR, 'Jaccard', .5)) |
| 56 | |
| 57 | for $paperS in dataset('CSX') |
| 58 | let $lenS := len(counthashed-word-tokens($paperS.title)) |
| 59 | let $tokensS := |
| 60 | for $word in counthashed-word-tokens($paperS.title) |
| 61 | for $token at $i in |
| 62 | // |
| 63 | // -- - Stage 1 - -- |
| 64 | // |
| 65 | for $paper in dataset('DBLP') |
| 66 | for $word in counthashed-word-tokens($paper.title) |
| 67 | group by $item := $word with $paper |
| 68 | order by count($paper) |
| 69 | return $item |
| 70 | where $word = $token |
| 71 | order by $i |
| 72 | return $i |
| 73 | for $prefix_tokenS in subset-collection( |
| 74 | $tokensS, |
| 75 | 0, |
| 76 | prefix-len($lenS, 'Jaccard', .5)) |
| 77 | |
| 78 | where $prefix_tokenR = $prefix_tokenS |
| 79 | |
| 80 | let $sim := similarity( |
| 81 | $lenR, |
| 82 | $tokensR, |
| 83 | $lenS, |
| 84 | $tokensS, |
| 85 | $prefix_tokenR, |
| 86 | 'Jaccard', |
| 87 | .5) |
| 88 | where $sim >= .5 |
| 89 | group by $idR := $paperR.id, $idS := $paperS.id with $sim |
| 90 | return {'idR': $idR, 'idS': $idS, 'sim': $sim[0]} |
| 91 | |
| 92 | for $paperR in dataset('DBLP') |
| 93 | for $paperS in dataset('CSX') |
| 94 | where $ridpair.idR = $paperR.id and $ridpair.idS = $paperS.id |
| 95 | return { 'R': { 'dblpid': $paperR.dblpid, 'title': $paperR.title }, |
| 96 | 'S': { 'csxid': $paperS.csxid, 'title': $paperS.title }, |
| 97 | 'sim': $ridpair.sim } |