Merge branch 'jarodwen/hotfix/issue396' with updated wiki pages and the fix for issue 396.
diff --git a/asterix-doc/src/site/markdown/AsterixDataTypes.md b/asterix-doc/src/site/markdown/AsterixDBDataModel.md
similarity index 94%
rename from asterix-doc/src/site/markdown/AsterixDataTypes.md
rename to asterix-doc/src/site/markdown/AsterixDBDataModel.md
index 6674006..ffefd09 100644
--- a/asterix-doc/src/site/markdown/AsterixDataTypes.md
+++ b/asterix-doc/src/site/markdown/AsterixDBDataModel.md
@@ -23,7 +23,12 @@
### Int8 / Int16 / Int32 / Int64 ###
-Integer types using 8, 16, 32, or 64 bits.
+Integer types using 8, 16, 32, or 64 bits. The ranges of these types are:
+
+- `Int8`: -127 to 127
+- `Int16`: -32767 to 32767
+- `Int32`: -2147483647 to 2147483647
+- `Int64`: -9223372036854775808 to 9223372036854775807
* Example:
@@ -40,7 +45,7 @@
### Float ###
-`Float` represents approximate numeric data values using 4 bytes.
+`Float` represents approximate numeric data values using 4 bytes. The range of a float value can be from 2^(-149) to (2-2^(-23)·2^(127) for both positive and negative. Beyond these ranges will get `INF` or `-INF`.
* Example:
@@ -57,7 +62,7 @@
### Double ###
-`Double` represents approximate numeric data values using 8 bytes.
+`Double` represents approximate numeric data values using 8 bytes. The range of a double value can be from (2^(-1022)) to (2-2^(-52))·2^(1023) for both positive and negative. Beyond these ranges will get `INF` or `-INF`.
* Example:
diff --git a/asterix-doc/src/site/markdown/AsterixDataTypesAndFunctions.md b/asterix-doc/src/site/markdown/AsterixDBFunctions.md
similarity index 86%
rename from asterix-doc/src/site/markdown/AsterixDataTypesAndFunctions.md
rename to asterix-doc/src/site/markdown/AsterixDBFunctions.md
index 7576648..d47752c 100644
--- a/asterix-doc/src/site/markdown/AsterixDataTypesAndFunctions.md
+++ b/asterix-doc/src/site/markdown/AsterixDBFunctions.md
@@ -1,290 +1,3 @@
-# Asterix Data Model (ADM) #
-
-# Basic data types #
-
-An instance of Asterix data model (ADM) can be a _primitive type_ (`Int32`, `Int64`, `String`, `Float`, `Double`, `Date`, `Time`, `Datetime`, etc. or `NULL`) or a _derived type_.
-
-## Primitive Types ##
-
-### Boolean ###
-`Boolean` data type can have one of the two values: _*true*_ or _*false*_.
-
- * Example:
-
- let $t := true
- let $f := false
- return { "true": $t, "false": $f }
-
-
- * The expected result is:
-
- { "true": true, "false": false }
-
-
-
-### Int8 / Int16 / Int32 / Int64 ###
-Integer types using 8, 16, 32, or 64 bits.
-
- * Example:
-
- let $v8 := int8("125")
- let $v16 := int16("32765")
- let $v32 := 294967295
- let $v64 := int64("1700000000000000000")
- return { "int8": $v8, "int16": $v16, "int32": $v32, "int64": $v64}
-
-
- * The expected result is:
-
- { "int8": 125i8, "int16": 32765i16, "int32": 294967295, "int64": 1700000000000000000i64 }
-
-
-### Float ###
-`Float` represents approximate numeric data values using 4 bytes.
-
- * Example:
-
- let $v1 := float("NaN")
- let $v2 := float("INF")
- let $v3 := float("-INF")
- let $v4 := float("-2013.5")
- return { "v1": $v1, "v2": $v2, "v3": $v3, "v4": $v4 }
-
-
- * The expected result is:
-
- { "v1": NaNf, "v2": Infinityf, "v3": -Infinityf, "v4": -2013.5f }
-
-
-### Double ###
-`Double` represents approximate numeric data values using 8 bytes.
-
- * Example:
-
- let $v1 := double("NaN")
- let $v2 := double("INF")
- let $v3 := double("-INF")
- let $v4 := double("-2013.593823748327284")
- return { "v1": $v1, "v2": $v2, "v3": $v3, "v4": $v4 }
-
-
- * The expected result is:
-
- { "v1": NaNd, "v2": Infinityd, "v3": -Infinityd, "v4": -2013.5938237483274d }
-
-
-### String ###
-`String` represents a sequence of characters.
-
- * Example:
-
- let $v1 := string("This is a string.")
- let $v2 := string("\"This is a quoted string\"")
- return { "v1": $v1, "v2": $v2 }
-
-
- * The expected result is:
-
- { "v1": "This is a string.", "v2": "\"This is a quoted string\"" }
-
-
-### Point ###
-`Point` is the fundamental two-dimensional building block for spatial types. It consists of two `double` coordinates x and y.
-
- * Example:
-
- let $v1 := point("80.10d, -10E5")
- let $v2 := point("5.10E-10d, -10E5")
- return { "v1": $v1, "v2": $v2 }
-
-
- * The expected result is:
-
- { "v1": point("80.1,-1000000.0"), "v2": point("5.1E-10,-1000000.0") }
-
-
-### Line ###
-`Line` consists of two points that represent the start and the end points of a line segment.
-
- * Example:
-
- let $v1 := line("10.1234,11.1e-1 +10.2E-2,-11.22")
- let $v2 := line("0.1234,-1.00e-10 +10.5E-2,-01.02")
- return { "v1": $v1, "v2": $v2 }
-
-
- * The expected result is:
-
- { "v1": line("10.1234,1.11 0.102,-11.22"), "v2": line("0.1234,-1.0E-10 0.105,-1.02") }
-
-
-### Rectangle ###
-`Rectangle` consists of two points that represent the _*bottom left*_ and _*upper right*_ corners of a rectangle.
-
- * Example:
-
- let $v1 := rectangle("5.1,11.8 87.6,15.6548")
- let $v2 := rectangle("0.1234,-1.00e-10 5.5487,0.48765")
- return { "v1": $v1, "v2": $v2 }
-
-
- * The expected result is:
-
- { "v1": rectangle("5.1,11.8 87.6,15.6548"), "v2": rectangle("0.1234,-1.0E-10 5.5487,0.48765") }
-
-
-### Circle ###
-`Circle` consists of one `point` that represents the center of the circle and a radius of type `double`.
-
- * Example:
-
- let $v1 := circle("10.1234,11.1e-1 +10.2E-2")
- let $v2 := circle("0.1234,-1.00e-10 +10.5E-2")
- return { "v1": $v1, "v2": $v2 }
-
-
- * The expected result is:
-
- { "v1": circle("10.1234,1.11 0.102"), "v2": circle("0.1234,-1.0E-10 0.105") }
-
-
-### Polygon ###
-`Polygon` consists of _*n*_ points that represent the vertices of a _*simple closed*_ polygon.
-
- * Example:
-
- let $v1 := polygon("-1.2,+1.3e2 -2.14E+5,2.15 -3.5e+2,03.6 -4.6E-3,+4.81")
- let $v2 := polygon("-1.0,+10.5e2 -02.15E+50,2.5 -1.0,+3.3e3 -2.50E+05,20.15 +3.5e+2,03.6 -4.60E-3,+4.75 -2,+1.0e2 -2.00E+5,20.10 30.5,03.25 -4.33E-3,+4.75")
- return { "v1": $v1, "v2": $v2 }
-
-
- * The expected result is:
-
- { "v1": polygon("-1.2,130.0 -214000.0,2.15 -350.0,3.6 -0.0046,4.81"), "v2": polygon("-1.0,1050.0 -2.15E50,2.5 -1.0,3300.0 -250000.0,20.15 350.0,3.6 -0.0046,4.75 -2.0,100.0 -200000.0,20.1 30.5,3.25 -0.00433,4.75") }
-
-
-### Date ###
-`Date` represents a time point along the Gregorian calendar system specified by the year, month and day. ASTERIX supports the date from `-9999-01-01` to `9999-12-31`.
-
-A date value can be represented in two formats, extended format and basic format.
-
- * Extended format is represented as `[-]yyyy-mm-dd` for `year-month-day`. Each field should be padded if there are less digits than the format specified.
- * Basic format is in the format of `[-]yyyymmdd`.
-
- * Example:
-
- let $v1 := date("2013-01-01")
- let $v2 := date("-19700101")
- return { "v1": $v1, "v2": $v2 }
-
-
- * The expected result is:
-
- { "v1": date("2013-01-01"), "v2": date("-1970-01-01") }
-
-
-### Time ###
-`Time` type describes the time within the range of a day. It is represented by three fields: hour, minute and second. Millisecond field is optional as the fraction of the second field. Its extended format is as `hh:mm:ss[.mmm]` and the basic format is `hhmmss[mmm]`. The value domain is from `00:00:00.000` to `23:59:59.999`.
-
-Timezone field is optional for a time value. Timezone is represented as `[+|-]hh:mm` for extended format or `[+|-]hhmm` for basic format. Note that the sign designators cannot be omitted. `Z` can also be used to represent the UTC local time. If no timezone information is given, it is UTC by default.
-
- * Example:
-
- let $v1 := time("12:12:12.039Z")
- let $v2 := time("000000000-0800")
- return { "v1": $v1, "v2": $v2 }
-
-
- * The expected result is:
-
- { "v1": time("12:12:12.039Z"), "v2": time("08:00:00.000Z") }
-
-
-### Datetime ###
-A `Datetime` value is a combination of an `Date` and `Time`, representing a fixed time point along the Gregorian calendar system. The value is among `-9999-01-01 00:00:00.000` and `9999-12-31 23:59:59.999`.
-
-A `Datetime` value is represented as a combination of the representation of its `Date` part and `Time` part, separated by a separator `T`. Either extended or basic format can be used, and the two parts should be the same format.
-
-Millisecond field and timezone field are optional, as specified in the `Time` type.
-
- * Example:
-
- let $v1 := datetime("2013-01-01T12:12:12.039Z")
- let $v2 := datetime("-19700101T000000000-0800")
- return { "v1": $v1, "v2": $v2 }
-
-
- * The expected result is:
-
- { "v1": datetime("2013-01-01T12:12:12.039Z"), "v2": datetime("-1970-01-01T08:00:00.000Z") }
-
-
-### Duration ###
-`Duration` represents a duration of time. A duration value is specified by integers on at least one of the following fields: year, month, day, hour, minute, second, and millisecond.
-
-A duration value is in the format of `[-]PnYnMnDTnHnMn.mmmS`. The millisecond part (as the fraction of the second field) is optional, and when no millisecond field is used, the decimal point should also be absent.
-
-Negative durations are also supported for the arithmetic operations between time instance types (`Date`, `Time` and `Datetime`), and is used to roll the time back for the given duration. For example `date("2012-01-01") + duration("-P3D")` will return `date("2011-12-29")`.
-
-Note that a canonical representation of the duration is always returned, regardless whether the duration is in the canonical representation or not from the user's input. More information about canonical representation can be found from [XPath dayTimeDuration Canonical Representation](http://www.w3.org/TR/xpath-functions/#canonical-dayTimeDuration) and [yearMonthDuration Canonical Representation](http://www.w3.org/TR/xpath-functions/#canonical-yearMonthDuration).
-
- * Example:
-
- let $v1 := duration("P100Y12MT12M")
- let $v2 := duration("-PT20.943S")
- return { "v1": $v1, "v2": $v2 }
-
-
- * The expected result is:
-
- { "v1": duration("P101YT12M"), "v2": duration("-PT20.943S") }
-
-
-### Interval ###
-`Interval` represents inclusive-exclusive ranges of time. It is defined by two time point values with the same temporal type(`Date`, `Time` or `Datetime`).
-
- * Example:
-
- let $v1 := interval-from-date(date("2013-01-01"), date("20130505"))
- let $v2 := interval-from-time(time("00:01:01"), time("213901049+0800"))
- let $v3 := interval-from-datetime(datetime("2013-01-01T00:01:01"), datetime("20130505T213901049+0800"))
- return { "v1": $v1, "v2": $v2, "v3": $v3 }
-
-
- * The expected result is:
-
- { "v1": interval-date("2013-01-01, 2013-05-05"), "v2": interval-time("00:01:01.000Z, 13:39:01.049Z"), "v3": interval-datetime("2013-01-01T00:01:01.000Z, 2013-05-05T13:39:01.049Z") }
-
-
-## Derived Types ##
-
-### Record ###
-A `Record` contains a set of fields, where each field is described by its name and type. A record type is either open or closed. Open records can contain fields that are not part of the type definition, while closed records cannot. Syntactically, record constructors are surrounded by curly braces "{...}".
-
-An example would be
-
-
- { "id": 213508, "name": "Alice Bob" }
-
-
-### OrderedList ###
-An `OrderedList` is a sequence of values for which the order is determined by creation or insertion. OrderedList constructors are denoted by brackets: "[...]".
-
-An example would be
-
-
- ["alice", 123, "bob", null]
-
-
-### UnorderedList ###
-An `UnorderedList` is an unordered sequence of values, similar to bags in SQL. UnorderedList constructors are denoted by two opening flower braces followed by data and two closing flower braces, like "{{...}}".
-
-An example would be
-
-
- {{"hello", 9328, "world", [1, 2, null]}}
-
-
# Asterix: Using Functions #
Asterix provides rich support of various classes of functions to support operations on string, spatial, and temporal data. This document explains how to use these functions.