[NO ISSUE][TXN] Prevent deadlock in Metadata transactions

- user model changes: no
- storage format changes: no
- interface changes: no

Details:
- Flushes in metadata datasets are triggerred by entity update
  logs, unlike regular transactions where flushes are triggerred
  by entity commit logs.
- Because entity update logs can be writting to disk before the
  operation completes, there is a chance that an operation that
  caused the component to be full exits after the log is flushed
  and so, a flush operation is not scheduled.
- This change proposes a simple fix. The fix is that metadata
  operation will also check if a flush is needed and will schedule
  one if needed.

Change-Id: I07a18840dc54fe052b7bd294595f816f6d8a4d2f
Reviewed-on: https://asterix-gerrit.ics.uci.edu/2413
Sonar-Qube: Jenkins <jenkins@fulliautomatix.ics.uci.edu>
Reviewed-by: Murtadha Hubail <mhubail@apache.org>
Tested-by: Jenkins <jenkins@fulliautomatix.ics.uci.edu>
Contrib: Jenkins <jenkins@fulliautomatix.ics.uci.edu>
Integration-Tests: Jenkins <jenkins@fulliautomatix.ics.uci.edu>
2 files changed
tree: f10466d35306e2ae0a9f06e44ca079d7d8063941
  1. .gitattributes
  2. .gitignore
  3. README.md
  4. asterixdb/
  5. build.xml
  6. hyracks-fullstack/
  7. pom.xml
README.md

What is AsterixDB?

AsterixDB is a BDMS (Big Data Management System) with a rich feature set that sets it apart from other Big Data platforms. Its feature set makes it well-suited to modern needs such as web data warehousing and social data storage and analysis. AsterixDB has:

  • Data model
    A semistructured NoSQL style data model (ADM) resulting from extending JSON with object database ideas

  • Query languages
    Two expressive and declarative query languages (SQL++ and AQL) that support a broad range of queries and analysis over semistructured data

  • Scalability
    A parallel runtime query execution engine, Apache Hyracks, that has been scale-tested on up to 1000+ cores and 500+ disks

  • Native storage
    Partitioned LSM-based data storage and indexing to support efficient ingestion and management of semistructured data

  • External storage
    Support for query access to externally stored data (e.g., data in HDFS) as well as to data stored natively by AsterixDB

  • Data types
    A rich set of primitive data types, including spatial and temporal data in addition to integer, floating point, and textual data

  • Indexing
    Secondary indexing options that include B+ trees, R trees, and inverted keyword (exact and fuzzy) index types

  • Transactions
    Basic transactional (concurrency and recovery) capabilities akin to those of a NoSQL store

Learn more about AsterixDB at its website.

Build from source

To build AsterixDB from source, you should have a platform with the following:

  • A Unix-ish environment (Linux, OS X, will all do).
  • git
  • Maven 3.3.9 or newer.
  • Oracle JDK 8 or newer.

Instructions for building the master:

  • Checkout AsterixDB master:

      $git clone https://github.com/apache/asterixdb.git
    
  • Build AsterixDB master:

      $cd asterixdb
      $mvn clean package -DskipTests
    

Run the build on your machine

Here are steps to get AsterixDB running on your local machine:

  • Start a single-machine AsterixDB instance:

      $cd asterixdb/asterix-server/target/asterix-server-*-binary-assembly/
      $./opt/local/bin/start-sample-cluster.sh
    
  • Good to go and run queries in your browser at:

      http://localhost:19001
    
  • Read more documentations to learn the data model, query language, and how to create a cluster instance.

Documentation

Community support